N-Fluorination of aziridinecarboxylates *via* fluorolysis of their *N*-aminomethyl derivatives

Vladimir V. Rozhkov, Kirill N. Makarov and Remir G. Kostyanovsky*a

^a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russian Federation. Fax: +7 095 938 2156

^b A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 117813 Moscow, Russian Federation. Fax: +7 095 135 5085

A new and convenient method for the synthesis of 1-fluoroaziridinecarboxylates through the fluorolysis of N-aminomethyl-aziridinecarboxylates is revealed.

 $\mathbf{a} \ \mathbf{R} = \mathbf{M}\mathbf{e}$

 $\mathbf{b} \ \mathbf{R} = \mathbf{P} \mathbf{r}^{\mathbf{i}}$

1-Fluoroaziridines show an extraordinarily high configurational stability of the nitrogen atom $(\Delta G_{\rm inv}=35~{\rm kcal~mol^{-1}})^1$ but only a few of these scarcely available compounds have been reported. They are obtained by addition of CH_2N_2 to the N-fluoroimine of hexafluoroacetone followed by acidolysis of the resulting Δ^2 -1,2,3-triazoline (yield 38%). Later, 1-fluoro-2,2-bis(trifluoromethyl)aziridine was obtained by direct fluorination of 2,2-bis(trifluoromethyl)aziridine (F2/NaF) in 50% yield and its NMR parameters were refined. Also, 1-fluoro-2-aryl(alkyl)aziridines were detected spectroscopically (NMR, IR) following the interaction of 2-aryl(alkyl)aziridines with $CF_3OF.^5$

Recently, by direct fluorination of NH-aziridines, some stable *N*-fluoroaziridinecarboxylates A–E were synthesised and isolated in pure form (Scheme 1). ^{4,6,7} N-Fluorination in the presence of NaF proceeds trans-stereospecifically due to the fixed orientation of the nitrogen lone pair through the intramolecular H-bond. When this H-bond is broken in the presence of Et_3N both isomers **A** and **B** are formed. In the case of unsymmetrically-substituted aziridinecarboxylates this leads to fluorine attack from the more sterically hindered side with the formation of mostly N-fluoroaziridine \mathbb{C}^6 or exclusively \mathbb{E}^{7} However, fluorination of aziridines in the presence of NaF is difficult to reproduce and yields strongly depend on the reaction conditions (dispersivity of NaF, mixing conditions, dilution extent, rate of F₂ feed), and fluorination in the presence of Et₃N is limited. Thus, methyl *trans*-2-trifluoromethylaziridine-3-carboxylate is far less nucleophilic than methyl aziridine-2-carboxylate and in the presence of Et₃N it does not undergo fluorination because of the concurrent and easier fluorination of Et₃N itself.

In this connection, we have evolved a more convenient method for the synthesis of *N*-fluoroaziridines by fluorolysis of aminomethyl derivatives. Chlorolysis of symmetric bis(dialkyl-

CO₂Me
$$F_2/N_2$$
 MeO F_2/N_2 F_3/N_2 F_4 F_5/N_2 F_4 F_5/N_2 F_4 F_5/N_2 F_4 F_5/N_2 F_5/N_2 F_4 F_5/N_2 $F_$

MeO O H
$$\xrightarrow{F_2/N_2}$$
 CO₂Me + CO₂Me CF₃ F CF₃ F CF₃ C D (C:D = 9:1)

$$\begin{array}{c|c}
MeO & O \\
N & F_2/N_2 \\
\hline
N_{AF} & CO_2Me \\
\hline
N_{CF_3} & F
\end{array}$$

Scheme 1

Scheme 2 Reagents and conditions: i, equimolar quantity of MeOCH₂NEt₂ or methyl ester of *N*-methoxymethylproline, 48 h in the presence of 4Å molecular sieves, 20–25 °C; ii, F₂/N₂, freon-11, –78 °C.

amino)methanes is well known to give *N*-chloroamines.⁸ 1-Aminomethylaziridines⁹⁻¹¹ and methyl 1-aminomethylaziridine-2-carboxylate¹² were obtained for the first time in our laboratory. It was shown that these compounds are attacked by electrophilic reagents at the aziridine nitrogen with C–N bond breakage,¹⁰ whereupon the 1-aminomethyl derivative of 2,2-dimethylaziridine containing the residue of a chiral secondary amine gives an optically active 1-chloro-2,2-dimethylaziridine under the action of Bu^tOCl or *N*-chlorosuccinimide.¹³

In this work we have synthesized new aminomethyl derivatives of aziridinecarboxylates and showed that they smoothly undergo fluorolysis forming the corresponding *N*-fluoroaziridines (Scheme 2).

In our opinion the reaction can be explained by formation of the ion pair IP as intermediate (Scheme 3). A stable immonium ion eliminates this ion pair to form the final NF-aziridine. Recently, the existence of a similar ion pair between Me₃N and fluorine was confirmed by rotational spectroscopy in the gas phase. ¹⁴

It should be noted that aziridinecarboxylate 2d as its N-unsubstituted analogue (Scheme 1)⁷ forms only one isomer

3d under these conditions. The cause of such stereospecificity is the high population of the trans-form (with respect to the CF₃ group) of the aminomethyl derivative due to the significantly greater bulk of the CF₃ substituent in comparison with CO₂Me. So, fluorine attack occurs from the more hindered side too. The configuration of 2d (Scheme 2) was assigned on the basis of the NMR data, † based on the presence of $^4J_{\rm HCCF}$ for H_a and its value (1.5 Hz). 2,15

1-Fluoroaziridine 3c was obtained in an optically active form from optically active aminomethylaziridine (2S,3S)-2c.

Product 4 was precipitated under the conditions of the reaction and at 20 $^{\circ}\hat{C}$ is a viscous oil of indefinite structure and insoluble in CCl₄ or CHCl₃, but very soluble in MeOH and acetone. Most likely, this is the fluorohydrate of the product of subsequent fluorination of fluoromethyldialkylamine.

References

1 R. G. Kostyanovsky, A. G. Korepin, P. V. Galkin, Yu. I. El'natanov, G. K. Kadorkina, I. I. Chervin and V. R. Kostyanovsky, Mendeleev Commun., 1995, 216.

 † ¹H and ¹⁹F NMR spectra were recorded on a Bruker WM-400 (at 400.13 MHz for ¹H and 376.48 MHz for ¹⁹F), ¹³C NMR spectra were recorded on a Bruker AC 200 and WM-400 (at 50.32 MHz and 100 MHz). Chemical shifts are expressed in ppm downfield of tetramethylsilane for 1H and $^{13}C;$ for $^{19}F,$ relative external $CF_3CO_2H.$

Methoxymethylamine and N-methoxymethylproline methyl ester were obtained according to refs. 16 and 17, aziridines **1a–d** according to refs.

2a: ¹H NMR (CDCl₃) δ : 1.06 (t, 6H, 2CH₃CH₂, ³J = 7.3 Hz), 2.7 (q, 4H, $2\text{CH}_3\text{C}H_2$, $^3J = 7.3\text{ Hz}$), 2.3 (br. s, 2H, CH_2 -aziridine ring), 3.54 (br. s, 2H, NCH_2N), 3.84 (br. s, 6H, MeO); $^{13}\text{C NMR (CDCl}_3)$ δ : 11.48 (q, CH₃CH₂, ${}^{1}J = 125.0$ Hz), 38.00 (t, CH₂–aziridine ring, ${}^{1}J = 173.0$ Hz), 43.38 (t, C-aziridine ring, ${}^{2}J = 2.9$ Hz), 44.11 (t, CH₃CH₂, ${}^{1}J = 133.0$ Hz), 51.39 (q, MeO, ${}^{1}J$ = 147.5 Hz), 69.55 (t, NCH₂N, ${}^{1}J$ = 146.1 Hz), 165.48 and 166.45 (m, CO).

2b: $[\alpha]_D^{15}$ –22.33° (*c* 0.1, MeOH). ¹H NMR (CDCl₃) δ : 1.24 and 1.26 [m, 12H, 2(CH₃)₂CH, ³*J* = 6.4 Hz], 1.79 and 1.85 (m, 2H, γ -CH₂), 1.93 and 2.23 (m, 2H, β-CH₂), 2.23 (br. s, 2H, CH₂-aziridine ring), 2.97 and $3.06 \text{ (m, 2H, }\delta\text{-CH}_2\text{), }3.70 \text{ (s, 3H, MeO), }3.72 \text{ (m, 1H, }\alpha\text{-CH), }4.43 \text{ (dd, }4.$ 2H, NCH₂N, AB spectrum, $\Delta \nu = 100 \text{ Hz}$, $^2J_{AB} = -9.8 \text{ Hz}$), 5.08 (hept, 2H, $2CHMe_2$, $^3J = 6.4$ Hz).

2c. (a) $_{1}^{15}$ +7.23° (c 9, CHCl₃). $_{1}^{1}$ H NMR (CDCl₃) $_{2}^{3}$: 1.05 (t, 6H, 2CH₃CH₂, $_{3}^{3}$ J = 7.3 Hz), 1.26 and 1.29 [m, 12H, 2(CH₃)₂CH, $_{3}^{3}$ J = 6.4 Hz], 2.71 (m, 4H, 2MeCH₂, ABX₃ spectrum $_{2}^{3}$ V = 12 Hz, $_{2}^{2}$ J_{AB} = $_{2}^{3}$ V = $_{3}^{3}$ = 0.4 Hz], 2.71 (III, 41), 2.01cCH₂, AbA₃ spectrum, $\Delta r = 2$ Hz, $r_{AB} = -12.6$ Hz, $r_{AB} = 3$ J_{BX} = 7.3 Hz), 2.29 and 2.82 (d, 2H, 2H-ring, $r_{AB} = -12.6$ Hz), 3.76 (q, 2H, NCH₂N, AB spectrum, $\Delta v = 24$ Hz, $r_{AB} = -12.6$ Hz), 5.04 (hept, 2H, 2CHMe₂, $r_{AB} = -12.6$ Hz).

= -12.0 Hz), 5.04 (nept, 2H, 2L/HMe₂, ^{3}J = 0.4 Hz). 2d: ^{1}H NMR (CDCl₃) δ : 1.06 (t, 6H, 2CH₃CH₂, ^{3}J = 7.3 Hz), 2.43 (dq, 1H, H_a, $^{2}J_{ab}$ = -1.5 Hz, $^{4}J_{aCCCF_{3}}$ = 1.5 Hz), 2.45 (d, 1H, H_b, $^{2}J_{ab}$ = -1.5 Hz), 2.68 (m, 4H, 2CH₂Me, ABX₃ spectrum, $\Delta \nu$ = 24 Hz, $^{2}J_{AB}$ = -12.8 Hz, $^{3}J_{AX}$ = $^{3}J_{BX}$ = 7.3 Hz), 3.57 (dd, 2H, NCH₂N, AB spectrum, $\Delta \nu$ = 52 Hz, $^{2}J_{AB}$ = -11.6 Hz), 3.84 (s, 3H, MeO).

 $\Delta v = 52 \text{ Hz}, {}^{2}J_{AB} = -11.6 \text{ Hz}), 3.84 \text{ (s, 3H, MeO)}.$ **3a**: yield 91%, bp 61–63 °C (1 torr). ${}^{1}\text{H}$ NMR (CDCl₃) δ : 2.81 (dd, 1H, H_a, ${}^{2}J_{ab} = -5.5 \text{ Hz}, {}^{3}J_{aF} = 29.3 \text{ Hz}), 3.32 (dd, 1H, H_b, <math>{}^{2}J_{ab} = -5.5 \text{ Hz}, {}^{3}J_{bF} = 40.9 \text{ Hz}), 3.80 \text{ (s, 3H, A-MeO)}, 3.87 \text{ (s, 3H, B-MeO)}, cf. ref. 4.}$ **3b**: yield 90%, bp 71–72 °C (1 torr). ${}^{1}\text{H}$ NMR (CDCl₃) δ : 1.30 and 1.34 [m, 12H, 2(CH₃)₂CH, ${}^{3}J = 6.4 \text{ Hz}], 2.74 \text{ (dd, 1H, H_a, <math>{}^{2}J_{ab} = -5.5 \text{ Hz}, {}^{3}J_{AF} = 29.3 \text{ Hz}), 3.27 \text{ (dd, 1H, H_b, <math>{}^{2}J_{ab} = -5.5 \text{ Hz}, {}^{3}J_{bF} = 40.9 \text{ Hz}), 5.11 \text{ (hept, 1H, A-CHMe₂, <math>{}^{3}J = 6.4 \text{ Hz}), 5.13 \text{ (hept, 1H, B-CHMe₂, <math>{}^{3}J = 6.4 \text{ Hz}), 5.13 \text{ (hept, 1H, B-CHMe₂, <math>{}^{3}J = 6.4 \text{ Hz}), {}^{5}J_{AF} = 29.3 \text{ Hz}, {}^{3}J_{bF} = 40.9 \text{ Hz}).$

3c: yield 90%, bp 82–85° (0.5 torr), $[\alpha]_D^{15}$ +34.45° (*c* 0.8, CHCl₃). ¹H NMR (CDCl₃) 5: 1.24 and 1.28 [m, 12H, 2(CH₃)₂CH, ³*J* = 6.1 Hz], 3.36 (dd, 1H, H_a, ${}^{3}J_{ac} = 6.7$ Hz, ${}^{3}J_{aF} = 20.1$ Hz), 3.75 (dd, 1H, H_c, ${}^{3}J_{ac} = 6.7$ Hz, ${}^{3}J_{cF} = 33.6$ Hz), 5.01 (hept, 1H, A-CHMe₂, ${}^{3}J = 6.1$ Hz), 5.08 (hept, 1H, B-CHMe₂, ${}^{3}J = 6.1$ Hz). ¹⁹F NMR (CDCl₃) δ : 18.36 (dd, FN, ${}^{3}J_{aF} = 20.1$ Hz, ${}^{3}J_{cF} = 33.6$ Hz), ${}^{c}J_{cF} = 33.6$ Hz), ${}^{c}J_{c$

 $^{J}_{aF} = 20.1 \text{ Hz}, ^{J}_{CF} = 33.6 \text{ Hz}), cf. \text{ ref. 4.}$ 3d: yield 52%, bp 72–75 °C (70 torr). ^{1}H NMR (CDCl₃) δ : 3.10 (ddq, 1H, H_a, $^{2}J_{ab} = -5.8 \text{ Hz}, ^{3}J_{aNF} = 28.7 \text{ Hz}, ^{4}J_{aCCF} = 2.4 \text{ Hz}), 3.29 (dd, 1H, H_b, <math>^{2}J_{ab} = -5.8 \text{ Hz}, ^{3}J_{bNF} = 41.5 \text{ Hz}), 3.87 (s, 3H, MeO). <math>^{19}\text{F}$ NMR (CDCl₃) δ : 14.13 (dd, CF₃, $^{4}J_{FCCa} = 2.4 \text{ Hz}, ^{4}J_{FCCNF} = 22.4 \text{ Hz}). <math>^{13}\text{C}$ NMR (CDCl₃) δ : 41.50 (dd, 3-C, $^{4}J_{Ca} = 172.1 \text{ Hz}, ^{4}J_{Cb} = 171.8 \text{ Hz}), 47.91 (qdt, 2-C, ^{2}J_{CCF} = 35.4 \text{ Hz}, ^{2}J_{CNF} = 7.0 \text{ Hz}, ^{2}J_{CCH} = 3.5 \text{ Hz}), 53.87 (q, MeO, ^{1}J_{CH} = 149.2 \text{ Hz}), 120.84 (q, CF₃, <math>^{1}J_{CF} = 277.4 \text{ Hz}), 162.21 (dq, CO, ^{3}J = 5.1 \text{ Hz})$ = 5.1 Hz).

- 2 R. G. Kostyanovsky, I. I. Chervin, A. A. Fomichev, Z. E. Samoilova, K. N. Makarov, Yu. V. Zeifman and B. L. Dyatkin, Tetrahedron Lett., 1969, 4021.
- 3 B. L. Dyatkin, K. N. Makarov and I. L. Knunyants, Tetrahedron, 1971, 27, 51.
- 4 R. G. Kostyanovsky, I. I. Chervin, G. K. Kadorkina, K. N. Makarov, L. T. Lantzeva, V. V. Rozhkov and A. V. Prosyanik, *Mendeleev* Commun., 1997, 54.
- 5 M. Seguin, J. C. Adenis, C. Michand and J.-J. Basselier, J. Fluorine Chem., 1979, 15, 37.
- V. V. Rozhkov, K. N. Makarov, S. N. Osipov, I. I. Chervin, A. V. Ignatenko and R. G. Kostyanovsky, Mendeleev Commun., 1997, 229.
- F. Prati, V. V. Rozhkov, K. N. Makarov, I. I. Chervin, A. Forni, I. Moretti, G. Torre and R. G. Kostyanovsky, J. Fluorine Chem., in press
- H. Böhme, E. Mundlos and O.-E. Herbof, Chem. Ber., 1957, 90, 2003.
- R. G. Kostyanovsky, O. A. Pan'shin and V. F. Bystrov, Izv. Akad. Nauk SSSR, Otdel. Khim. Nauk, 1962, 931 (in Russian).
- 10 R. G. Kostyanovsky and O. A. Pan'shin, Izv. Akad. Nauk SSSR, Ser. Khim., 1965, 564 (in Russian).
- R. G. Kostyanovsky, O. A. Pan'shin and T. Z. Papoyan, Dokl. Akad. Nauk SSSR, 1967, 177, 1099 (in Russian).
- 12 O. G. Nabiev, M. A. Shakhgel'diev, I. I. Chervin and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1985, 716 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 657).
- 13 R. G. Kostyanovsky and G. K. Kadorkina, Izv. Akad. Nauk SSSR, Ser. Khim., 1977, 1686 (in Russian).
- 14 H. I. Bloemink, S. A. Cooke, J. H. Holloway and A. C. Legon, Angew. Chem., Int. Ed. Engl., 1997, 36, 1340.
- 15 R. G. Kostyanovsky, G. K. Kadorkina, I. I. Chervin and I. K. A. Romero Maldonado, Khim. Geterotsikl. Soedin., 1988, 757. [Chem. Heterocycl. Compd. (Engl. Transl.), 1988, 616].
- 16 G. Barbaro, A. Battaglia and A. Dondoni, J. Chem. Soc., 1970, B, 588.
- 17 R. G. Kostyanovsky, A. E. Polyakov, M. D. Isobaev, G. K. Kadorkina and V. I. Markov, Izv. Akad. Nauk SSSR, Ser. Khim., 1974, 1444 (in Russian).
- 18 G. V. Shustov, A. V. Kachanov, V. A. Korneev, R. G. Kostyanovsky and A. Rauk, J. Am. Chem. Soc., 1993, 115, 10267.
- A. V. Prosyanik, S. V. Bondarenko and V. I. Markov, Zh. Org. Khim., 1980, 16, 1554 (in Russian).

Received: Moscow, 26th December 1997 Cambridge, 3rd February 1998; Com. 8/00172C